Existence, Stability, and Dynamics of Ring and Near-Ring Solutions to the Saturated Gierer-Meinhardt Model in the Semistrong Regime

نویسندگان

  • Iain R. Moyles
  • Michael J. Ward
چکیده

We analyze a singularly perturbed reaction-diffusion system in the semi-strong diffusion regime in two spatial dimensions where an activator species is localized to a closed curve, while the inhibitor species exhibits long range behavior over the domain. In the limit of small activator diffusivity we derive a new moving boundary problem characterizing the slow time evolution of the curve, which is defined in terms of a quasi steady-state inhibitor diffusion field and its properties on the curve. Numerical results from this curve evolution problem are illustrated for the Gierer-Meinhardt model (GMS) with saturation in the activator kinetics. A detailed analysis of the existence, stability, and dynamics of ring and near-ring solutions for the GMS model is given, whereby the activator concentrates on a thin ring concentric within a circular domain. A key new result for this ring geometry is that by including activator saturation there is a qualitative change in the phase portrait of ring equilibria, in that there is an S-shaped bifurcation diagram for ring equilibria, which allows for hysteresis behavior. In contrast, without saturation, it is well-known that there is a saddle-node bifurcation for the ring equilibria. For a near-circular ring, we develop an asymptotic expansion up to quadratic order to fully characterize the normal velocity perturbations from our curve-evolution problem. In addition, we also analyze the linear stability of the ring solution to both breakup instabilities, leading to the disintegration of a ring into localized spots, and zig-zag instabilities, leading to the slow shape deformation of the ring. We show from a nonlocal eigenvalue problem that activator saturation can stabilize breakup patterns that otherwise would be unstable. Through a detailed matched asymptotic analysis, we derive a new explicit formula for the small eigenvalues associated with zig-zag instabilities, and we show that they are equivalent to the velocity perturbations induced by the near-circular ring geometry. Finally, we present full numerical simulations from the GMS PDE system that confirm the predictions of the analysis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Existence, Stability, and Dynamics of Ring and Near-Ring Solutions to the Gierer-Meinhardt Model with Saturation in the Semi-Strong Regime

We analyze a singularly perturbed reaction-diffusion system in the semi-strong diffusion regime in two spatial dimensions where an activator species is localized to a closed curve, while the inhibitor species exhibits long range behavior over the domain. In the limit of small activator diffusivity we derive a new moving boundary problem characterizing the slow time evolution of the curve, which...

متن کامل

Nonlinear Asymptotic Stability of the Semistrong Pulse Dynamics in a Regularized

We use renormalization group (RG) techniques to prove the nonlinear asymptotic stability for the semistrong regime of two-pulse interactions in a regularized Gierer–Meinhardt system. In the semistrong limit the localized activator pulses interact strongly through the slowly varying inhibitor. The interaction is not tail-tail as in the weak interaction limit, and the pulse amplitudes and speeds ...

متن کامل

Nonlinear Asymptotic Stability of the Semistrong Pulse Dynamics in a Regularized Gierer-Meinhardt Model

We use renormalization group (RG) techniques to prove the nonlinear asymptotic stability for the semi-strong regime of two-pulse interactions in a regularized Gierer-Meinhardt system. In the semi-strong limit the localized activator pulses interact strongly through the slowly varying inhibitor. The interaction is not tail-tail as in the weak interaction limit, and the pulse amplitudes and speed...

متن کامل

Semistrong Pulse Interactions in a Class of Coupled Reaction-Diffusion Equations

Pulse-pulse interactions play central roles in a variety of pattern formation phenomena, including self-replication. In this article, we develop a theory for the semistrong interaction of pulses in a class of singularly perturbed coupled reaction-diffusion equations that includes the (generalized) Gierer– Meinhardt, Gray–Scott, Schnakenberg, and Thomas models, among others. Geometric conditions...

متن کامل

Stability and Bifurcation of an SIS Epidemic Model with Saturated Incidence Rate and Treatment Function

       In this paper an SIS epidemic model with saturated incidence rate and treatment func- tion is proposed and studied. The existence of all feasible equilibrium points is discussed. The local stability conditions of the disease free equilibrium point and endemic equilibrium point are established with the help of basic reproduction number.However the global stabili- ty conditions of these eq...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Applied Dynamical Systems

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2017